IPA


 MATAHARI

 

Matahari adalah bola raksasa yang terbentuk dari gas hidrogen dan helium. Matahari termasuk bintang berwarna putih yang berperan sebagai pusat tata surya. Seluruh komponen tata surya termasuk 8 planet dan satelit masing-masing, planet-planet kerdil, asteroid, komet, dan debu angkasa berputar mengelilingi Matahari. Di samping sebagai pusat peredaran, Matahari juga merupakan sumber energi untuk kehidupan yang berkelanjutan. Panas Matahari menghangatkan bumi dan membentuk iklim, sedangkan cahayanya menerangi Bumi serta dipakai oleh tumbuhan untuk proses fotosintesis. Tanpa Matahari, tidak akan ada kehidupan di Bumi karena banyak reaksi kimia yang tidak dapat berlangsung. 

Struktur Matahari

 

Ilustrasi bagian-bagian Matahari. (1) Inti (2) Zona radiatif (3) Zona konvektif (4) Fotosfer (5) Kromosfer (6) Korona (7) Bintik Matahari (8) Granula (9) Prominensa.

Matahari memiliki enam lapisan yang masing-masing memiliki karakteristik tertentu. Keenam lapisan tersebut meliputi inti Matahari, zona radiatif, dan zona konvektif yang membentuk lapisan dalam (interior); fotosfer; kromosfer; dan korona sebagai daerah terluar dari Matahari.
Inti Matahari
Inti adalah area terdalam dari Matahari yang memiliki suhu sekitar 15 juta derajat Celcius (27 juta derajat Fahrenheit). Berdasarkan perbandingan radius/diameter, bagian inti berukuran seperempat jarak dari pusat ke permukaan dan 1/64 total volume Matahari. Kepadatannya adalah sekitar 150 g/cm3. Suhu dan tekanan yang sedemikian tingginya memungkinkan adanya pemecahan atom-atom menjadi elektron, proton, dan neutron. Neutron yang tidak bermuatan akan meninggalkan inti menuju bagian Matahari yang lebih luar. Sementara itu, energi panas di dalam inti menyebabkan pergerakan elektron dan proton sangat cepat dan bertabrakan satu dengan yang lain menyebabkan reaksi fusi nuklir (sering juga disebut termonuklir). Inti Matahari adalah tempat berlangsungnya reaksi fusi nuklir helium menjadi hidrogen. Energi hasil reaksi termonuklir di inti berupa sinar gamma dan neutrino memberi tenaga sangat besar sekaligus menghasilkan seluruh energi panas dan cahaya yang diterima di Bumi. Energi tersebut dibawa keluar dari Matahari melalui radiasi.
Zona radiatif
Zona radiatif adalah daerah yang menyelubungi inti Matahari. Energi dari inti dalam bentuk radiasi berkumpul di daerah ini sebelum diteruskan ke bagian Matahari yang lebih luar. Kepadatan zona radiatif adalah sekitar 20 g/cm3 dengan suhu dari bagian dalam ke luar antara 7 juta hingga 2 juta derajat Celcius. Suhu dan densitas zona radiatif masih cukup tinggi, namun tidak memungkinkan terjadinya reaksi fusi nuklir.
Zona konvektif
Zona konvektif adalah lapisan di mana suhu mulai menurun. Suhu zona konvektif adalah sekitar 2 juta derajat Celcius (3.5 juta derajat Fahrenheit). Setelah keluar dari zona radiatif, atom-atom berenergi dari inti Matahari akan bergerak menuju lapisan lebih luar yang memiliki suhu lebih rendah. Penurunan suhu tersebut menyebabkan terjadinya perlambatan gerakan atom sehingga pergerakan secara radiasi menjadi kurang efisien lagi. Energi dari inti Matahari membutuhkan waktu 170.000 tahun untuk mencapai zona konvektif. Saat berada di zona konvektif, pergerakan atom akan terjadi secara konveksi di area sepanjang beberapa ratus kilometer yang tersusun atas sel-sel gas raksasa yang terus bersirkulasi. Atom-atom bersuhu tinggi yang baru keluar dari zona radiatif akan bergerak dengan lambat mencapai lapisan terluar zona konvektif yang lebih dingin menyebabakan atom-atom tersebut "jatuh" kembali ke lapisan teratas zona radiatif yang panas yang kemudian kembali naik lagi. Peristiwa ini terus berulang menyebabkan adanya pergerakan bolak-balik yang menyebabakan transfer energi seperti yang terjadi saat memanaskan air dalam panci. Oleh sebab itu, zona konvektif dikenal juga dengan nama zona pendidihan (the boiling zone). Materi energi akan mencapai bagian atas zona konvektif dalam waktu beberapa minggu.
Fotosfer
Fotosfer atau permukaan Matahari meliputi wilayah setebal 500 kilometer dengan suhu sekitar 5.500 derajat Celcius (10.000 derajat Fahrenheit). Sebagian besar radiasi Matahari yang dilepaskan keluar berasal dari fotosfer. Energi tersebut diobservasi sebagai sinar Matahari di Bumi, 8 menit setelah meninggalkan Matahari.
Kromosfer
Kromosfer adalah lapisan di atas fotosfer. Warna dari kromosfer biasanya tidak terlihat karena tertutup cahaya yang begitu terang yang dihasilkan fotosfer. Namun saat terjadi gerhana Matahari total, di mana bulan menutupi fotosfer, bagian kromosfer akan terlihat sebagai bingkai berwarna merah di sekeliling Matahari. Warna merah tersebut disebabkan oleh tingginya kandungan helium di sana.
Korona
Korona merupakan lapisan terluar dari Matahari. Lapisan ini berwarna putih, namun hanya dapat dilihat saat terjadi gerhana karena cahaya yang dipancarkan tidak sekuat bagian Matahari yang lebih dalam. Saat gerhana total terjadi, korona terlihat membentuk mahkota cahaya berwarna putih di sekeliling Matahari. Lapisan korona memiliki suhu yang lebih tinggi dari bagian dalam Matahari dengan rata-rata 2 juta derajat Fahrenheit, namun di beberapa bagian bisa mencapai suhu 5 juta derajat Fahrenheit. 

Sumber : Wikipedia


Pengertian Gempa Bumi
Secara sederhana gempa bumi dipahami sebagai bergetar atau bergoyangnya permukaan bumi atau seisme. Ilmu yang mempelajari gempa bumi adalah seismologi. Bergetar atau bergoyangnya permukaan bumi merupakan peristiwa perambatan atau penjalaran gelombang gempa yang sampai ke permukaan bumi akibat lepasnya energi potensial yang dimiliki lapisan yang ada di bawah permukaan bumi secara mengejutkan dan tiba-tiba.
Gempa bumi terjadi karena adanya perubahan atau pergerakan kerak bumi yang disebut lempeng tektonik dan mengakibatkan perubahan letak permukaaan tanah secara signifikan dari posisi semula. Pusat gempa merupakan lokasi gempa di dalam kerak bumi di mana tenaga gempa bumi dibebaskan.
Perisitiwa gempa bumi memang tidak setiap saat dapat dirasakan oleh manusia. Sebenarnya gempa bumi terjadi setiap hari, namun kebanyakan tidak terasa oleh manusia dan tidak semuanya menyebabkan banyak kerusakan. Gempa bumi yang tidak terekam merupakan proses alami dari kerak bumi yang selalu bergolak. Pergolakan ini tentunya menimbulkan getaran-getaran yang rutin terjadi. Seperti kita ketahui di dalam kerak bumi terdapat cairan material bumi yang selalu bergolak. Ketika cairan itu keluar dan mencapai lapisan terluar atau kulit bumi itu disebut lahar yang biasanya melalui letusan gunung berapi.
Biasanya gempa bumi kerap terjadi di kawasan pertemuan antar lempeng tektonik, di mana terjadi pergeseran antara kepingan kerak bumi. Pada saat terjadinya perpindahan atau pergeseran batuan pada kerak bumi yang besar dan secara mendadak ini maka terjadilah peristiwa yang disebut gempa bumi atau kerap disebut gempa bumi tektonik karena disebabkan adanya pergerakan lempeng tektonik.

Indonesia merupakan salah satu kawasan yang paling rawan gempa bumi di dunia. Letak Indonesia adalah antara dua lempeng tektonik utama, Lempeng Tektonik Indo-Australia dan Eurosia. Juga Indonesia terletak di kawasan yang terkenal dengan Cincin Api Pasifik (Pacific Ring of Fire), sehingga Indonesia banyak memiliki gunung-gunung berapi yang aktif seperti Merapi dan Bromo. Akibatnya Indonesia seringkali mengalami bencana gempa bumi , tsunami dan letusan gunung api. Sebagai contoh adalah gempa Liwa di Lampung, gempa Sentani di Papua, gempa Flores, gempa di Aceh dan gempa Nias yang diikuti oleh tsunami, gempa Padang, gempa Bengkulu, gempa Nabire dan gempa Jawa Barat serta letusan Gunung Lokon di Sulawesi Utara.

Jenis dan Proses Terjadinya Gempa
Proses terjadinya gempa bumi dapat dilihat dari penyebab utama terjadinya gempa bumi. Ada tiga jenis gempa bumi yang dapat dibedakan dilihat menurut terjadinya.
1.
Gempa vulkanik

Sesuai dengan namanya gempa vulkanik atau gempa gunung berapi merupakan peristiwa gempa bumi yang terjadi karena letusan gunung berapi. Gempa ini dapat terjadi sebelum dan sesaat adanya erupsi atau letusan gunung berapi dan getarannya sangat dirasakan oleh manusia dan hewan sekitar gunung berapi itu berada. Menurut penelitian, gempa vulkanik terjadi hanya 7% dari seluruh gempa bumi yang pernah terjadi di muka bumi.Contohnya antara lain adalah gempa Gunung Merapi* di Jawa Tengah, gempa Gunung Una-Una di Tomini Sulawesi Tengah dan gempa Gunung Pericutin.


2.
Gempa Tektonik

Seperti diketahui bahwa kulit bumi terdiri dari lapisan-lapisan batuan. Tiap-tiap lapisan memiliki kekerasan dan masa jenis yang berbeda satu sama lain. Lapisan kulit bumi yang yang terdiri lempeng lempeng tektonik mengalami pergeseran satu sama lain akibat arus konveksi yang terjadi dalam bumi.
Pergeseran ini kian hari menimbulkan pengumpulan energi stress yang sewaktu-waktu akan lepas.Pergeseran lempeng terdiri dari tiga tipe, pergeseran mendatar yang mengakibatkan terjadinya patahan mendatar, pergeseran menunjam yaitu salah satu lempeng menyusup ke lempeng lainnya (subduksi), sehingga menciptakan lembah atau cekungan bumi dan pergeseran tumbukan antar lempeng yang akan menciptakan gunung atau bukit baru. Peristiwa pelepasan energi pada pergeseran lempengan inilah yang disebut gempa tektonik.


3.
Gempa reruntuhan

Gempa runtuhan atau terban merupakan gempa bumi yang terjadi karena adanya runtuhan tanah atau batuan. Lereng gunung yang terjadi dan memiliki energi potensial yang besar ketika jatuh atau runtuh akan membuat bergetarnya permukaan bumi. Inilah yang disebut gempa runtuhan.


4.
Gempa Jatuhan

Seperti kita ketahui bumi merupakan salah satu planet bumi yang ada dalam susunan tata surya. Setiap hari bumi menerima hantaman meteor atau benda langit lain. Namun ketika menerima meteor atau benda langit lain yang besar bumi akan bergetar. Bergetar permukaan bumi disebabkan jatuhnya benda langit inilah yang disebut gempa bumi jatuhan


Dari keempat jenis gempa itu, jenis Gempa Bumi Jatuhan jarang sekali terjadi di muka bumi, sehingga para ahli kerap mengabaikan untuk memasukkan jenis gempa bumi jatuhan dalam pembahasan gempa bumi. Sebaliknya, gempa bumi tetonik merupakan gempa bumi yang paling sering terjadi dan paling berbahaya menimbulkan korban fisik dan manusia

Gempa bumi tektonik memiliki getaran paling dahsyat. Getarannya mengakibatkan patahnya lapisan permukaan bumi. Akibatnya permukaan tanah menjadi terbelah, jalan raya, rumah, jembatan serta bangunan fisik lain menjadi rusak dan hancur, bahkan menimbulkan korban jiwa manusia yang tidak sedikit

Gempa tektonik kebanyakan terjadi di daerah subduksi yaitu daerah dimana terjadi pergeseran lempeng tektonik yang menyusup atau menunjam ke lempeng tektonik lainya Di daerah subduksi ini dapat terjadi gempa gempa dangkal , sedang dan dalam..

Pusat gempa yang berada di bawah permukaan bumi disebut dengan hiposentrum. Sedangkan lokasi di permukaan bumi yang terletak tegak lurus dari hiposentrum dikenali sebagai 'epicenter' atau epicentrum. Semakin dangkal hiposentrum gempa bumi semakin besar potensi kerusakan. Gempa bumi merambat dengan cepat ke segala arah dan menimbulkan kerusakan namun pada episentrum inilah kerusakan paling parah terjadi.

Gempa bumi dapat dibedakan menurut kedalam hiposentrum yaitu gempa bumi dangkal, gempa bumi sedang dan gempa bumi dalam.
a.
Gempa dangkal adalah gempa bumi yang terjadi pada kedalaman hiposentrum kurang dari 33 km dari permukaan bumi. Gempa inilah yang paling berbahaya dan potensi menimbulkan kerusakan.
b.
Gempa sedang atau disebut pula dengan gempa menengah, yaitu gempa bumi yang memiliki hiposentrum antara 33 – 300 km dari permukaan bumi. Sekitar 12% gempa bumi terjadi pada golongan ini
c.
Gempa dalam adalah gempa yang terjadi pada hiposentrum 300 – 700 km di bawah permukaan bumi. Gempa ini jarang sekali terjadi hanya 3% gempa bumi dari keseluruhan gempa bumi yang terjadi.

Menurut lokasinya, gempa bumi dibedakan menjadi dua: gempa bumi daratan dan gempa bumi lautan.
a.
Gempa bumi daratan adalah gempa bumi yang episentrumnya berada di daratan
b.
Gempa bumi lautan adalah gempa bumi yang episentrumnya berada di lautan. Pada gempa lautan inilah yang kerap menimbulkan tsunami karena mengakibatkan bergeraknya air laut sehingga menimbulkan potensi ketinggian gelombang laut yang pada akhirnya menerjang pantai atau pelabuhan terdekat.

Ketika terjadi gempa bumi, getaran yang diakibatkannya merambat dari titik hiposentrumnya. Oleh karena itu gelombang getaran gempa dapat dibedakan menjadi tiga jenis: gelombang primer, gelombang sekunder dan gelombang permukaan
a.
Gelombang primer
Gelombang primer atau disering dilambangkan dengan gelombang P merupakan gelombang getaran gempa yang merambat secara longitudinal, berasal dari hiposentrum dan merambat ke segala arah dengan kecepatan 4 –7 km/s.
b.
Gelombang sekunder
Gelombang ini disebut juga gelombang S atau gelombang transversal adalah gelombang getaran gempa yang merambat dari hiposentrum ke segala arah dengan kecepatan 2 – 5 km/s.
c.
Gelombang panjang
Gelombang permukaaan dilambangkan dengan gelombang L ( Love ) adalah getaran yang gempa yang merambat di permukaan bumi dengan kecepatan lebih rendah. Gelombang ini lebih dikenal dengan gelombang permukaan, karena rambatan getaran lebih terasa di lapisan permukaan bumi.

Getaran gempa bumi dapat merambat keatas (vertical) dan mendatar (horizontal). Getaran gempa komponen vertikal dapat merontokkan genting dan jendela bangunan sedangkan getaran gempa komponen horizontal dapat mengakibatkan robohnya bangunan secara keseluruhan.

Bagaimana mengukur gempa bumi dan daya rambatnya? Untuk mengetahui kekuatan getaran gempa bumi digunakan alat seismometer. Seismometer yang dirangkai dengan alat yang mencatat parameter gempa disebut seismograf. Sedangkan hasil rekaman pada piasnya disebut seismogram. Sebuah seismograf dapat mencatat gempa komponen vertical dan masing- dan gempa komponen horizontal.

Ketika terjadi gempa, getaran gempa yang terekam adalah gelombang primer karena kecepatan rambatnya paling tinggi, lalu diikuti oleh rekaman gelombang sekunder yang memiliki kecepatan rambat lebih rendah dari gelombang primer. Gelombang permukaan datang paling akhir karena memiliki kecepatan rambat paling rendah. Seismograf mencatat semua getaran dan kecepatan rambat gempa bumi dalam bentuk seismogram.

Ada beberapa skala yang digunakan untuk mengukur kekuatan gempa bumi. Skala Mercalli, Omori, Cancani, dan skala Richter* merupakan skala yang digunakan, namun skala Richter adalah yang paling popular untuk mengukur kekuatan gempa bumi yang disebut dengan magnitude (M). Berdasarkan skala-skala ini orang dapat mengenali kekuatan gempa yang pada akhirnya berguna untuk mengantisipasinya seperti desain konstruksi bangunan dan jalan raya

Menurut skala Richter kekuatan gempa bumi dapat dilihat sebagai berikut:
Skala Richter (
M *) Pengaruh Gempa Bumi
> 3,5
Umumnya tidak terasa, tetapi terekam
3,5-5,4
Seringkali terasa, tetapi jarang mengakibatkan kerusakan
< 6,0
Dapat menyebabkan kerusakan besar pada bangunan yang kurang kuat dan meliputi daerah yang kecil.
6.1-6.9
Dapat menimbulkan kerusakan pada fisik dan menimbulkan korban jiwa manusia pada radius sampai 100 kilometer
7.0-7.9
Pada skala ini termasuk gempa bumi besar. Dapat menyebabkan kerusakan serius pada daerah yang lebih luas.
> 8
Gempa bumi besar. Dapat menyebabkan kerusakan serius pada daerah yang meliputi beberapa ratus kilometer

Sebagai contoh, gempa bumi di Aceh mencapai kekuatan 9,0 skala Richter yang mengakibatkan kerusakan fisik yang amat besar dan menimbulkan korban yang banyak.


Gempa bumi adalah fenomena alam yang tidak bisa dihindari atau dicegah oleh manusia. Namun kita harus mengenali peristiwa gempa bumi melalui sejarah terjadinya gempa bumi, proses kejadiannya, di mana saja sering terjadi gempa, pada daerah mana saja gempa memiliki potensi terjadinya gempa, siklus dan sejarah terjadinya gempa bumi di muka bumi. Dengan demikian kita dapat melakukan antisipasi untuk mengurangi kerugian fisik dan jiwa manusia yang ditimbulkan oleh gempa bumi misalnya antara lain dengan mendesain konstruksi bangunan tahan gempa, memberi peringatan pada daerah rawan gempa, ketepatan prediksi terjadinya gempa oleh ilmuwan, pelatihan penanganan bencana gempa bumi.





No comments:

Post a Comment